Raspberry Pi AI Kit
| ||
Overview
Introduction
The Raspberry Pi AI Kit Bundles The Raspberry Pi M.2 HAT+ With A Hailo AI Acceleration Module For Use With Raspberry Pi 5.
Features
- Contains a Hailo AI module with Neural Processing Unit (NPU), with onboard Hailo-8L chip capable of 13 tera-operations per second (TOPS).
- Raspberry Pi M.2 HAT+ supports connecting the AI module to the Raspberry Pi 5.
- Thermal pads are pre-installed between the module and the M.2 HAT+.
- Support hardware kit installation.
- Onboard 16mm stacked GPIO connector.
Hardware Connection
Pay attention to the cable orientation, as shown below:
User Guide
Upgrade Software & Firmware
#1: update software sudo apt update && sudo apt full-upgrade sudo rpi-eeprom-update #Configure CLI (Not required for systems above 2024) sudo raspi-config 在Advanced Options -> Bootloader Version, select Latest. Then use Finish or Esc to exit raspi-config #2: update firmware sudo rpi-eeprom-update -a
Identify Devices
1: Enable PCIE interface:
Connect the hardware and the PCIE interface will automatically open as the latest system detects the hardware. If it does not open, you can execute: add "dtparam=pciex1" in the /boot/firmware/config.txt
2: Enable PCIE Gen3: add the following content at /boot/firmware/config.txt: (Gne3 mode must be enabled):
dtparam=pciex1_gen=3
3: Reboot PI5 after modification, and then the device can be identified (or you can install the libraries before rebooting):
Test Demo
Running camera demos with rpicam-apps using the Hailo AI neural network accelerator.
Preparation:
1: Raspberry Pi 5 and Raspberry Pi AI Kit. 2: Install 64-bit Raspberry Pi OS Bookworm. 3: Install Raspberry Pi camera (for testing, using Raspberry_Pi_Camera _Module_3 to connect to the CAM1 interface).
1: Install the required dependencies for AI Kit:
sudo apt install hailo-all
2: Reboot the device:
sudo reboot
3: Check whether the driver is normal:
hailortcli fw-control identify Or you can execute "dmesg | grep -i hailo" to check the log:
4: Check the camera:
rpicam-hello -t 10s Please make sure the camera is working properly
5: Clone rpicam-apps
git clone --depth 1 https://github.com/raspberrypi/rpicam-apps.git ~/rpicam-apps
6: Test:
Object test: rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolov6_inference.json --lores-width 640 --lores-height 640 Yolov8 model: rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolov8_inference.json --lores-width 640 --lores-height 640 YoloX model: rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolox_inference.json --lores-width 640 --lores-height 640 Yolov5 characters and facial models rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolov5_personface.json --lores-width 640 --lores-height 640 Image segmentation: rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolov5_segmentation.json --lores-width 640 --lores-height 640 --framerate 20
Posture estimation: rpicam-hello -t 0 --post-process-file ~/rpicam-apps/assets/hailo_yolov8_pose.json --lores-width 640 --lores-height 640
For more content, you can refer to GitHub and Hailo website.
Support
Technical Support
If you need technical support or have any feedback/review, please click the Submit Now button to submit a ticket, Our support team will check and reply to you within 1 to 2 working days. Please be patient as we make every effort to help you to resolve the issue.
Working Time: 9 AM - 6 PM GMT+8 (Monday to Friday)