RP2040-Zero
| ||
| ||
Overview
RP2040-Zero, A Low-Cost, High-Performance Pico-Like MCU Board Based On Raspberry Pi Microcontroller RP2040.
Specification
- RP2040 microcontroller chip designed by Raspberry Pi in the United Kingdom.
- Dual-core Arm Cortex M0+ processor, flexible clock running up to 133 MHz.
- 264KB of SRAM, and 2MB of on-board Flash memory.
- USB-C connector, keeps it up to date, easier to use.
- The castellated module allows soldering direct to carrier boards.
- USB 1.1 with device and host support.
- Low-power sleep and dormant modes.
- Drag-and-drop programming using mass storage over USB.
- 29 × multi-function GPIO pins (20× via edge pinout, others via solder points).
- 2 × SPI, 2 × I2C, 2 × UART, 4 × 12-bit ADC, 16 × controllable PWM channels.
- Accurate clock and timer on-chip.
- Temperature sensor.
- Accelerated floating-point libraries on-chip.
- 8 × Programmable I/O (PIO) state machines for custom peripheral support.
Pinouts
Dimension
Anti-piracy statement
Many unscrupulous merchants in the market maliciously copy Waveshare products, the general characteristics of these unscrupulous merchants are:
- Copying web page descriptions, product pictures, and product information.
- The use of poor components, the light operation is not stable, and may appear short circuit, equipment burned, and other phenomena (to avoid your property losses, please beware of piracy).
- Do not pay attention to product quality, no ability to deal with after-sales. (We not only produce excellent quality boards but also provide a strong after-sales team to protect your products and works).
- Recognize Waveshare genuine products, we have the following characteristics in terms of configuration and appearance:
- With Waveshare LOGO (certificate).
- Immersion gold process (only some models, see product description).
Resources
Supporting Resources
Documents
Demo
Application
Official Resources
Raspberry Pi Official Documents
- Get Started with MicroPython on Raspberry Pi Pico
- Raspberry Pi related books download
- Raspberry Pi Pico Schematic
- Pico Pinout definition
- Getting started with Pico
- Pico C SDK User Manual
- Pico Python SDK User Manual
- Pico Datasheet
- RP2040 Datasheet
- RP2040 Hardware Design Manual
Raspberry Pi Open Source Demos
Other Documents
Pico W
Firmware
Pico
User Manual
FAQ
Debugging is not possible. You can program on a board that can be debugged and then directly burn the firmware into the RP2040 Zero.
{{{5}}}
The Bootrom of RP2040 provides a standard USB bootloader that identifies as a writable drive for copying code onto the RP2040 using UF2 files. UF2 files copied onto the drive are downloaded and written into Flash or RAM, and the device is automatically restarted, enabling code download and execution on the RP2040 using just a USB connection.
Any type of file can be written to the USB drive from the host, but typically these files are not stored—they appear this way due to caching on the host side. Only when a UF2 file is written to the device is special content recognized, and the data is written to the specified location in RAM or Flash. After downloading the complete and valid UF2 file, the RP2040 will automatically reboot to run the newly downloaded code.
UF2 files aren't stored; they are burned into designated locations based on the corresponding file format. For specific file formats, refer to the open-source project by Microsoft at https://github.com/microsoft/uf2.
{{{5}}}
Press RESET first, then press BOOT; release RESET first, then release BOOT to enter programming mode. You can drag and drop or copy the firmware into this mode for flashing.
{{{5}}}
The VSYS pin of the RP2040 is connected to the VUSB pin directly in RP2040-zero (named Pin23 ), If you want to connect the battery directly to the VSYS pin, you need to add a diode to avoid backflow. You can also directly connect the battery to Pin 21 (the 3V3) of the RP2040-zero if the voltage of the battery is 3.3V.
RP2040 zero itself has no battery protection function, you need to ensure that your battery will not be overcharged or over-discharged, causing safety accidents.
{{{5}}}
This board doesn't pin out the SWD pins.
{{{5}}}
Due to the limited space, the power management part is omitted, resulting in zero can only be powered by 5V/3.3V. But zero itself has no battery protection function, you need to ensure that your battery will not be overcharged or over-discharged, which will cause safety accidents.
{{{5}}}
The VSYS pin of the RP2040 is connected to the VUSB pin directly in RP2040-zero (named Pin23 ), If you want to connect the battery directly to the VSYS pin, you need to add a diode to avoid backflow. You can also directly connect the battery to Pin 21 (the 3V3) of the RP2040-zero if the voltage of the battery is 3.3V.
{{{5}}}
The VSYS pin of the RP2040 is connected to the VUSB pin directly in RP2040-zero (named Pin23 ), if you do not need to use the USB port, you can connect a 3.3V power to the VSYS pin, we still recommend you to add a diode to it to avoid backflow.
{{{5}}}
The RP2040 microcontroller, which is used in the RP2040 Zero, has the potential to achieve very low sleep currents, making it ideal for low-power applications.
The power consumption is 2mA.
{{{5}}}
Implementation example: https://github.com/raspberrypi/pico-playground/tree/master?tab=readme-ov-file#sleep
Support
Technical Support
If you need technical support or have any feedback/review, please click the Submit Now button to submit a ticket, Our support team will check and reply to you within 1 to 2 working days. Please be patient as we make every effort to help you to resolve the issue.
Working Time: 9 AM - 6 PM GMT+8 (Monday to Friday)