RM530N-GL

From Waveshare Wiki
Jump to: navigation, search
RM530N-GL
RM530N-GL.jpg

M.2
Quectel 5G/4G/3G/GNSS Global Band
{{{name2}}}

{{{name3}}}

{{{name4}}}

{{{name5}}}

Overview

The RM530N-GL is a 5G Sub-6GHz module specially optimized for IoT/eMBB applications. Adopts 3GPP Release 16 specification and supports 5G non-standalone (NSA) and standalone (SA) modes. Designed in an M.2 form factor, RM530N-GL is compatible with Quectel RM520N 5G module series, easy for users to design the devices with single Sub-6 support or both Sub-6 & mmWave support. This module is an industrial-grade module for industrial and commercial applications only.

The RM530N-GL series nearly covers all the mainstream carriers worldwide. The integrated multi-constellation high-precision GNSS receiver (supports GPS, GLONASS, BDS, and Galileo) greatly simplifies the product design and provides quicker, more accurate positioning capability.

Built in a rich set of network protocols, integrates multiple industry-standard interfaces and supports multiple drivers and software functions (USB/PCIe drivers for Windows 7/8/8.1/10, Linux, and Android), which can be adopted in a wide range of eMBB and IoT applications including industrial routers, home gateways, STB, industrial laptops, consumer laptops, industrial PDAs, rugged tablet PCs, video surveillance and digital signage.

Features

  • Designed for IoT/eMBB applications, support 5G/4G/3G, M.2 form factor.
  • Full coverage of multi-network standards including 5G and LTE-A.
  • Supports NSA and SA modes.
  • Multi-constellation GNSS receiver available for applications requiring fast and accurate positioning in any environment.
  • Supports multiple functions: DFOTA and VoLTE (optional).

Selection Guide

5G Sub-6 RM500U-CNV RM500Q-GL 5G HAT RM502Q-AE 5G HAT RM520N-GL RM530N-GL
Picture RM500U-CN-5G-HAT-details-17-1.jpg RM500U-CN-5G-HAT-details-17-3.jpg RM500U-CN-5G-HAT-details-17-5.jpg RM520N-GL-details-2.jpg RM530N-GL-details-2.jpg
5G Standard 3GPP R15 3GPP R16
5G Chip UNISOC Qualcomm
5G Sub-6 GHz Sub-6 GHz & mmWave
Region/Operator China, EMEA, Asia-Pacific except Americas except China Global
Operating Temperature -30°C ~ +75°C
Extension Temperature -40°C ~ +85°C
Module Size 30.0 × 52.0 × 2.3 (mm)
Module Weight 8.8g 8.7g 8.8g
Power Supply 3.3~4.4V, Typ. 3.7V 3.135~4.4V, Typ. 3.7V
Power Consumption 78μA @ shutdown;

5.1mA @ hibernate;
57mA @ USB 2.0, idle;
71mA @ USB 3.0, idle

70μA @ shutdown;

4.0mA @ hibernate;
32mA @ USB 2.0, idle;
54mA @ USB 3.0, idle

80μA @ shutdown;

4.2mA @ hibernate;
39mA @ USB 2.0, idle;
54.5mA @ USB 3.0, idle

195μA @ shutdown;

4.7mA @ hibernate;
41mA @ USB 2.0, idle;
60mA @ USB 3.0, idle

173μA @ shutdown;

5.1mA @ hibernate;
51mA @ USB 2.0, idle;
69mA @ USB 3.0, idle

Frequency Band
5G 5G NR - n257, n258, n260, n261
5G NR NSA n41, n78, n79 n41, n77, n78, n79 n1, n2, n3, n5, n7, n8, n12, n20, n25, n28, n38, n40, n41, n48, n66, n71, n77, n78, n79 n1, n2, n3, n5, n7, n8, n12, n13, n14, n18, n20, n25, n26, n28, n29, n30, n38, n40, n41, n48, n66, n70, n71, n75, n76, n77, n78, n79
5G NR SA n1, n2, n3, n5, n8, n28, n41, n77, n78, n79 n1, n2, n3, n5, n7, n8, n12, n20, n25, n28, n38, n40, n41, n48, n66, n71, n77, n78, n79 n1, n2, n3, n5, n7, n8, n12, n13, n14, n18, n20, n25, n26, n28, n29, n30, n38, n40, n41, n48, n66, n70, n71, n75, n76, n77, n78, n79
LTE LTE-FDD B1, B3, B5, B8 B1, B2, B3, B4, B5, B7, B8, B12, B13, B14, B17, B18, B19, B20, B25, B26, B28, B29, B30, B32, B66, B71
LTE-TDD B34, B38, B39, B40, B41 B34, B38, B39, B40, B41, B42, B43, B48
LAA - B46
UMTS WCDMA B1, B5, B8 B1, B2, B3, B4, B5, B6, B8, B19 B1, B2, B4, B5, B8, B19
GNSS - GPS / GLONASS / BeiDou(Compass) / Galileo / QZSS (only RM520N-GL and RM530N-GL support)
Data Rate
5G mmWave - DL 4.0Gbps;
UL 1.4Gbps
5G SA Sub-6 DL 2Gbps;
UL 1Gbps
DL 2.1Gbps;
UL 900Mbps
DL 4.2Gbps;
UL 450Mbps
DL 2.4Gbps;
UL 900Mbps
5G NSA Sub-6 DL 2.2Gbps;
UL 575Mbps
DL 2.5Gbps;
UL 600/650Mbps
DL 5Gbps;
UL 650Mbps
DL 3.4Gbps;
UL 550Mbps
LTE DL 600Mbps;
UL 150Mbps
DL 1.0Gbps;
UL 200Mbps
DL 2Gbps;
UL 200Mbps
DL 1.6Gbps;
UL 200Mbps
UMTS DL 42.2Mbps;
UL 11Mbps
DL 42Mbps;
UL 5.76Mbps

Recommended Carrier Board

RM530N-GL employs the M.2 Key B standard interface, compatible with a variety of Waveshare 4G/5G modules featuring the M.2 interface. The following section highlights the use of two commonly used 4G/5G M.2 test baseboards.

Adaptable 4G/5G Module
Model USB TO M.2 B KEY M.2 TO 4G/5G HAT
Picture USB-TO-M.2-B-KEY-intro.jpg RM520N-GL-5G-HAT-with-case-details-1.jpg
Module Interface M.2 M.2
Communication Interface USB 3.0 USB 3.0
Application 5G Dongle with access to Windows/Linux computers 4G/5G Module designed for Raspberry Pi
OS Windows/Linux Raspberry OS/OpenWRT and other common Linux systems for Raspberry Pi

USB TO M.2 B KEY

For more details about USB TO M.2 KEY, you can click here to see its hardware and user manual.

1. Hardware Connection

【Hardware Preparation】

  • RM530N-GL × 1
  • USB TO M.2 B KEY × 1
  • 5G SIM card × 1

【Installation Guide】
Please refer to the following diagram to install the Nano SIM card (5G function should be enabled) and 5G module, and then install the heat sink, cooling silicone, and 5G antenna, see the following figure:
RM520N-GL03.jpg
Using the USB TO M.2 B KEY board, the RM530N-GL 5G module can be plugged into a Linux host board such as a Windows computer/laptop, Raspberry Pi, or Jetson Nano via the USB 3.0 interface.
RM520N-GL04.png

2. Connecting with Windows

2.1 Driver Installation in Windows
  • Refer to the hardware connection above and connect the module to the Windows PC via USB TO M.2 B KEY.
  • Install Windows-related drivers:

RM520N-GL-8.jpg

2.2 5G Network Speed Test
  • Under the Windows system, it is recommended to use MBIM mode for 5G networking.

In general, after installing the driver according to the section 2.1 Windows Driver Installation, the computer device manager and network connection can be identified normally.
RM520N-GL network card, as shown in the following figure:
RM520N-GL10.jpg
At this point, as long as the SIM card and band of the RM520N-GL 5G module that is connected to the RM520N-GL 5G module are available in the test area, the 5G network can be obtained automatically, as shown in the following figure:
RM520N-GL11.jpg

  • If the driver is installed and the Quectel USB AT Port (COM) is identified, but the RM520N-GL NIC device is not identified, it is possible that the factory default of the 5G module is not MBIM mode or you have modified it to other modes in use. At this time, you can try to use SSCOM or QCOM serial assistant, open Quectel USB AT Port (COM) to send the AT command to set to MBIM mode, the command is as follows:
AT+QCFG="usbnet",2
AT+CFUN=1,1
  • After confirming that the module can normally access the Internet through 5G, we can use network speed test tools to test the speed of 5G Internet access, the following figure is a screenshot of the actual test with speed test software:

RM520N-GL12.jpg

Note:
①The actual speed measurement results are affected by the network coverage, network congestion, and base station distribution.
②As the 5G module requires large power when testing the speed, the USB TO M.2 B KEY must be connected to a USB 3.0 interface with full power for speed measurement. Otherwise, you may fail to test the speed or need to reconnect the modules.
③If the NIC is identified as normal while the NET indicator is not on and you cannot connect to the network, you can refer to FAQ.
2.3 GNSS Positioning Test
  • Connect the passive GPS antenna to ANT3 of the module (corresponding to L1 of GNSS), note that the lettered side is facing down and the antenna is placed in an open outdoor test (note that GNSS positioning test cannot be performed in rainy weather).
  • Then SSCOM or QCOM serial assistant opens Quectel USB AT Port (COM) to send AT commands:
AT+QGPS=1        //Open GPS positioning
AT+QGPSLOC=0     //Get GPS position

RM50XQ-GNSS-01.png

When you just turn on GNSS positioning, you usually need to wait for a few minutes to get the data of GNSS positioning.
  • With GNSS positioning enabled, you can open the Quectel USB NMEA Port (COM) through SSCOM, QCOM serial assistant, or other positioning software to see the NMEA GPS positioning data output from this port, as shown below:

RM50XQ-GNSS-02.png

  • GNSS positioning test completed, AT command can be sent to Quectel USB AT Port (COM) to turn off GNSS positioning:
AT+QGPS=0        //disable GNSS positioning

3. Connect to other Linux main controls such as Raspberry Pi/Jetson Nano

Resource

Software

Driver

Datasheet

Related Link

FAQ

 Answer:
  • RM500U-CN: Based on Spreadtrum.
  • RM500Q-GL: Based on Qualcomm, support GNSS positioning, for China.
  • RM500Q-AE/RM502Q-AE: based on Qualcomm, support GNSS positioning, except China.
{{{3}}}
{{{4}}}

{{{5}}}


 Answer:
AT+QCFG="data_interface"
     AT+QCFG="data_interface",0       //Modify it as USB mode

{{{5}}}


 Answer:

Please change the dial mode to the stable router mode by the following commands:

AT+QCFG="nat",1

{{{5}}}


 Answer:
The 5G module consumes a lot of power, especially at the moment of network access; the Raspberry Pi has limited power supply capacity and can be powered by a 5V (3A) power supply through the onboard TYPE-C interface.
{{{3}}}
{{{4}}}

{{{5}}}


 Answer:
When using an external power supply, after restarting the Raspberry Pi, the RM500U does not restart. At this time, you can restart the RM500U with the command and so on.

{{{5}}}


 Answer:
  • Connected to the SIM Card and Skyline, required to connect to the Four-Root Skyline
  • After confirming the connection, please use the following AT Log check box:
AT+CPIN?
AT+COPS?
AT+QCSQ
AT+QENG="servingcell

RM.png


 Answer:
There are the following dial types:
AT+QCFG="usbnet",0 driver type is NDIS(QMI));
AT+QCFG="usbnet",1 The driver type is ECM;
AT+QCFG="usbnet",2 The driver type is MBIM; (RM5XXQ support)
AT+QCFG="usbnet",3 The driver type is RNDIS
AT+QCFG="usbnet",5 The driver type is NCM;

{{{5}}}


 Answer:
Use the following command to turn on the echo, and press Enter after entering: (Blind typing is required here)
ATE1

{{{5}}}


 Answer:
It can be inquired at the following website:

https://www.frequencycheck.com

{{{5}}}


 Answer:
The USB power supply capability of the Raspberry Pi is worse than that of the computer. It needs to be connected to an external power supply. Please set the switch to EXT PWR, and connect the HAT interface to a 5V 3A power supply:

RM500U-CN 5G HAT.png

{{{5}}}


 Answer:

Raspberry PI 2B/zero, the user serial port device number is ttyAMA0;

ls -l /dev/serial*

The following command line can be used to confirm that serial0 is the serial port device number selected, as shown in the figure below:
RM500U-CN 5G HAT 9.png


 Answer:
  • The AA version (with USB function) M.2 B KEY interface module is required. The AP version (PCIE, without USB function) module is not supported.
  • If it is an M.2 B KEY interface and conforms to the line sequence shown in the figure below, the AA version module (with USB function) can be connected and used:

RM520N-GL91.png


 Answer:

5G power consumption is relatively huge, and the host computer's USB port may not be able to carry it, please refer to the USB dual plug cable to provide the module with sufficient power, as shown in the figure:
RM500-CN-5G-HAT-FAQ.jpg

{{{5}}}


Support



Technical Support

If you need technical support or have any feedback/review, please click the Submit Now button to submit a ticket, Our support team will check and reply to you within 1 to 2 working days. Please be patient as we make every effort to help you to resolve the issue.
Working Time: 9 AM - 6 PM GMT+8 (Monday to Friday)