PICO-Cam-A

From Waveshare Wiki
Jump to: navigation, search
PICO-Cam-A
PICO-Cam-A.jpg

RP2040
USB Type-C
{{{name2}}}

{{{name3}}}

{{{name4}}}

{{{name5}}}

{{{name6}}}

Overview

PICO-Cam-A is a high-performance microcontroller development board designed by Waveshare, which has 1.14inch LCD, Cam camera, buttons and other peripherals on board in a small board size, and is equipped with some GPIO and Debug interfaces, which is convenient for users to develop and embed the application into products.

Features

  • RP2040 microcontroller chip designed by Raspberry Pi
  • Dual-core ARM Cortex M0+ processor, flexible clock running up to 133 MHz
  • 264KB of SRAM, and 16MB of onboard Flash memory
  • Type-C connector, keeps it up to date, easier to use
  • On-board HM01B0 grayscale camera
  • Onboard 1.14inch 240×135 pixels 65K colorful IPS LCD for clear color pictures
  • USB 1.1 with device and host support
  • Support low-power sleep and hibernation modes
  • Can be recognized as a large-capacity memory via USB for drag-and-drop download program
  • 13 GPIO pins via 1.27mm pitch female header
  • 2 × SPI, 2 × I2C, 2 × UART, 4 × 12-bit ADC, 13 × controllable PWM channel
  • Accurate clock and timer on-chip
  • Temperature sensor
  • Accelerated floating-point libraries on-chip
  • 8 × Programmable I/O (PIO) state machines for custom peripheral support

Parameters

LCD Specifications
Controller ST7789V Resolution 135(H)RGB x 240(V)
Communication Interface SPI Display Dimensions 14.864(H)x 24.912(V)mm
Display Panel IPS Pixel Size 0.1101(H)x 0.1035(V)mm

Pinout

PICO-Cam-A02.jpg

Dimensions

PICO-Cam-A03.jpg

Get Started with Pico

Introduction

C/C++ Series

For C/C++, it is recommended to use Pico VS Code for development. This is a Microsoft Visual Studio Code extension designed to make it easier for you to create, develop, and debug projects for the Raspberry Pi Pico series development board. Whether you are a beginner or an experienced professional, this tool can help you confidently and easily develop Pico. Below we will introduce how to install and use the extension.

  • Official website tutorial: https://www.raspberrypi.com/news/pico-vscode-extension/
  • This tutorial is applicable to Raspberry Pi Pico, Pico2 and the RP2040 and RP2350 series development boards developed by our company
  • The default development environment is Windows. For other environments, please refer to the official website tutorial for installation

Install VSCode

  1. Firstly, click to download pico-vscode package, unzip and open the package, double-click to install VSCode
    Pico-vscode-1.JPG
    Note: If vscode is already installed, check if the version is v1.87.0 or higher
    Pico-vscode-2.JPG
    Pico-vscode-3.JPG

Install extension

  1. Click on EXTENSIONS, select Install from VSIX
    Pico-vscode-4.jpg
  2. Select the package with vsix suffix, click Install
    Pico-vscode-5.jpg
  3. Then vscode will automatically install Raspberry Pi Pico and its dependent extensions. You can click Refresh to view the installation progress
    Pico-vscode-6.jpg
  4. The bottom right corner shows installation completed, close vscode
    Pico-vscode-7.JPG

Configure extension

  1. Open the directory C:\Users\username and copy the entire .pico-sdk to that directory
    Pico-vscode-8.JPG
  2. The copy is completed
    Pico-vscode-9.JPG
  3. Open VSCode and configure various paths in the Raspberry Pi Pico extension
    Pico-vscode-10.JPG
    The configuration is as follows:
    Cmake Path:
    ${HOME}/.pico-sdk/cmake/v3.28.6/bin/cmake.exe
    
    Git Path:
    ${HOME}/.pico-sdk/git/cmd/git.exe    
    
    Ninja Path:
    ${HOME}/.pico-sdk/ninja/v1.12.1/ninja.exe
    
    Python3 Path:
    ${HOME}/.pico-sdk/python/3.12.1/python.exe             
    

New project

  1. Configuration is completed, then create a new project. First enter the project name, select the path, and click Create to create the project
    To test the official example, you can click Example next to the project name to select
    Pico-vscode-11.JPG
  2. The project was created successfully
    Pico-vscode-12.JPG
  3. Select SDK version
    Pico-vscode-13.JPG
  4. Select Yes for advanced configuration
    Pico-vscode-14.JPG
  5. Select the cross-compilation chain, 13.2.Rel1 is for ARM cores, RISCV.13.3 is for RISCV cores, and you can choose one of them according to your needs
    Pico-vscode-15.JPG
  6. Selects Default (the path configured earlier) for CMake version
    Pico-vscode-16.JPG
  7. Select Default for Ninja version
    Pico-vscode-17.JPG
  8. Select development board
    Pico-vscode-18.JPG
  9. Click Complie to compile
    Pico-vscode-19.JPG
  10. The uf2 format file is successfully compiled
    Pico-vscode-20.JPG

Import project

  1. The Cmake file for importing the project cannot have Chinese (including comments), otherwise it may cause import failure
  2. To import your own project, you need to add a line of code to the Cmake file to switch between pico and pico2 normally, otherwise even if pico2 is selected, the compiled firmware will still be suitable for pico
    Pico-vscode-21.JPG
    set(PICO_BOARD pico CACHE STRING "Board type")
    

Update extension

  1. The extension version in the offline package is 0.15.2, and you can also choose to update to the latest version after the installation is complete
    Pico-vscode-22.JPG

Open-source Demo

Sample Demo

C Demo

Burn Firmware

Way 1: Hold down the BOOT key and connect to the computer, release the BOOT key, a removable disk will appear on the computer, copy the firmware library with suffix .uf2 into it.
Way 2: After connecting the computer, press the BOOT key and RESET key at the same time, release the RESET key and then release the BOOT key, the computer will appear a removable disk, copy the firmware library with the suffix .uf2 into it.

Code Analysis

Example Explanation
This example primarily involves capturing images through the camera and displaying them on a 1.14-inch LCD. The demo utilizes multi-core processing, with Core 1 responsible for acquiring image data and image processing, while Core 0 handles the image display.
Core 1 Code Explanation

  • Data Pushing
    multicore_fifo_push_blocking() is a function provided by Pico SDK for pushing data to the FIFO (First In, First Out) queue of the multi-core system. Here, Core 1 will push the FLAG_VALUE to FIFO, and Core 0 will block to wait for the FLAG_VALUE data from Core 1 in the flow of execution.
multicore_fifo_push_blocking(FLAG_VALUE);
  • Wait for Data
    Core 1 blocks and waits for the data from Core 0.
uint32_t ack = multicore_fifo_pop_blocking();
  • LCD Initialization
    Call DEV_Module_Init() to initialize the pins and buttons related to the LCD, and call LCD_1IN14_V2_Init() to initialize the LCD.
DEV_Module_Init();
LCD_1IN14_V2_Init(HORIZONTAL);
LCD_1IN14_V2_Clear(BLACK);
UDOUBLE Imagesize = LCD_1IN14_V2_HEIGHT * LCD_1IN14_V2_WIDTH * 2;
UWORD *BlackImage;
if ((BlackImage = (UWORD *)malloc(Imagesize)) == NULL)
{
    printf("Failed to apply for black memory...\r\n");
    exit(0);
}
  • Display Image
    Call Paint_DrawImage() to draw images, and call LCD_1IN14_V2_Display() to display the images on the LCD.
Paint_NewImage((UBYTE *)BlackImage, LCD_1IN14_V2.WIDTH, LCD_1IN14_V2.HEIGHT, 0, WHITE);
Paint_SetScale(65);
Paint_SetRotate(ROTATE_0);
Paint_DrawImage(gImage_waveshare, 0, 0, 240, 135);
LCD_1IN14_V2_Display(BlackImage);
DEV_Delay_ms(500);
  • Camera Initialization
    This code segment calls cam_config_struct() to initialize the camera configuration structure "config" and then proceeds to initialize the camera by calling cam_init().
struct cam_config config;
cam_config_struct(&config);
cam_init(&config);
  • Image Processing
    This code segment is a loop where the camera captures a frame in each iteration, processes the image, and ultimately stores the processed image data in "displayBuf". The "imageReady" flag is then set to 1, indicating that the image is ready for display.
while (true) {
    cam_capture_frame(&config);

    uint16_t index = 0;
    for (int y = 134; y > 0; y--) {
        for (int x = 0; x < 240; x++) {
            uint16_t c = image_buf[(y)*324+(x)];
            uint16_t imageRGB = (((c & 0xF8) << 8) | ((c & 0xFC) << 3) | ((c & 0xF8) >> 3));
            displayBuf[index++] = (uint16_t)(imageRGB >> 8) & 0xFF;
            displayBuf[index++] = (uint16_t)(imageRGB) & 0xFF;
        }
    }

    imageReady = 1;
}

Core 0 Code Explanation

  • Boot Core1
    multicore_launch_core1 is the function provided by Pico SDK for booting Core 1 on the Raspberry Pi Pico. This code start Core 1 to execute the specified function through calling multicore_launch_core1().
multicore_launch_core1(core1_entry);
  • Wait for data
    Core 0 blocks and waits for data from Core 1, if data FLAG_VALUE is successfully received then send data to Core 1.
uint32_t ack = multicore_fifo_pop_blocking();
if (ack != FLAG_VALUE)
    printf("Error: Core 0 failed to receive acknowledgment from core 1!\n");
else {
    multicore_fifo_push_blocking(FLAG_VALUE);
    printf("Success: Core 0 Received acknowledgment from core 1!\n");
}
  • Main Loop
    Continuously checks the "imageReady" flag in the main loop. Once the flag is detected as 1, indicating that the image is ready for display, it calls LCD_1IN14_V2_Display() to show the image. After the display, it resets the "imageReady" flag to 0.
while (1) {
    if (imageReady == 1) {
        LCD_1IN14_V2_Display((uint16_t*)displayBuf);
        // Reset the imageReady flag after displaying the image
        imageReady = 0;
    }
    DEV_Delay_ms(1);
}

Run the Demo

  • Burn the firmware, and the PICO-Cam-A will display the boot interface after powering on, and then display the footage captured by the camera in real time.
    PICO-Cam-A-show.jpg

Resource

Demo

Document

Drawing

Official Resources

Raspberry Pi Official Datasheet

Raspberry Pi Open-source Demo

Development Software

Support



Technical Support

If you need technical support or have any feedback/review, please click the Submit Now button to submit a ticket, Our support team will check and reply to you within 1 to 2 working days. Please be patient as we make every effort to help you to resolve the issue.
Working Time: 9 AM - 6 PM GMT+8 (Monday to Friday)